首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2623篇
  免费   87篇
  国内免费   247篇
  2023年   33篇
  2022年   29篇
  2021年   53篇
  2020年   85篇
  2019年   80篇
  2018年   102篇
  2017年   90篇
  2016年   107篇
  2015年   107篇
  2014年   92篇
  2013年   185篇
  2012年   74篇
  2011年   118篇
  2010年   64篇
  2009年   133篇
  2008年   121篇
  2007年   144篇
  2006年   113篇
  2005年   130篇
  2004年   111篇
  2003年   126篇
  2002年   90篇
  2001年   82篇
  2000年   59篇
  1999年   60篇
  1998年   45篇
  1997年   55篇
  1996年   39篇
  1995年   47篇
  1994年   50篇
  1993年   36篇
  1992年   38篇
  1991年   33篇
  1990年   31篇
  1989年   35篇
  1988年   21篇
  1987年   15篇
  1986年   16篇
  1985年   9篇
  1984年   16篇
  1983年   7篇
  1982年   28篇
  1981年   9篇
  1980年   12篇
  1979年   14篇
  1977年   5篇
  1974年   2篇
  1973年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有2957条查询结果,搜索用时 15 毫秒
91.
白洋淀湿地水华暴发阈值分析   总被引:4,自引:0,他引:4  
水体富营养化阈值分析可为控制水华暴发,确定合理的污染物控制水平提供科学依据.以白洋淀湿地为例,利用2000-2009年水质监测数据,选择表征水体富营养化的主要指标进行主成分聚类分析,划分出低溶氧高营养型和不稳定型2类水域;并针对不同水域类型,以叶绿素a为因变量,以pH值、水温、透明度(SD)、CODcr、总氮(TN)、总磷(TP)、氨氮、硝氮和溶解态无机磷为自变量,采用逐步回归方法,分别建立了水质指标与叶绿素a的多元线性关系式,以此确定了白洋淀湿地水体水华暴发阈值.根据叶绿素a为30μgL-1为水华暴发的临界值,白洋淀低溶氧高营养型水域CODcr应控制在37.31mg·L-1,不稳定型水域TP应控制在0.12mg·L-1.  相似文献   
92.
基于城市土地利用类型的地表温度与植被指数的关系   总被引:2,自引:0,他引:2  
以沈阳市三环作为研究区域,基于QuickBird、Landsat/TM遥感影像和GIS空间分析技术,获取城市土地利用信息,陆地表面温度(LST)以及归一化植被指数(NDVI),定量分析了LST与NDVI在不同城市土地利用类型之间的差异及空间关系.结果表明:LST和NDVI具有明显相反的变化趋势,城市不同土地利用类型的LST与NDVI平均值也具有显著的差异性;多重比较发现,LST和NDVI在两两土地利用类型之间的差异不同;LST与NDVI相关性的显著程度受空间尺度的影响,LST与NDVI的相关性随空间尺度变化呈现出先增加后降低再逐渐增加的趋势.研究结果可为城市规划以及城市绿地系统规划中缓解城市热岛效应提供科学依据.  相似文献   
93.
Concentrations and spatial distribution of Zn, Cu, Cd, and Pb along two landscapes including a wastewater-irrigated area and a control area were determined to assess the impact of long-term wastewater irrigation and landscape properties on heavy metal contamination. Some disturbed and undisturbed soil samples were taken from soil trenches and soil cores, located on three main landscape positions (upper slope, midslope, and lower slope) in northwestern Iran. The investigation showed that the mean concentration of the heavy metals followed the order Zn > Cu > Pb > Cd in the wastewater-irrigated soil and Pb > Zn > Cu > Cd in the control soils. On average, compared to similar positions in the control region, the wastewater-irrigated regions contained 3.0 (midslope) to 4.9 (lower slope), 2.7 (midslope) to 4.6 (lower slope), 3.3 (upper slope) to 4.1 (lower slope), and 1.7 (upper slope) to 2.6 (lower slope) times higher amounts of Zn, Cu, Cd, and Pb, respectively. Significant positive relationships (P < 0.05) were recorded between the heavy metals concentration with <0.002 mm particle-size fraction and organic matter content, the fractions linked to runoff and soil erosion. It is believed that the two soil fractions play a crucial role in the distribution of the metals along the wastewater-irrigated landscape. Despite the significant increase of heavy metals (P < 0.05) in the wastewater-irrigated soils compared with control soils, the concentration of all evaluated metals was below the maximum accepted limits (Zn < 300 mg/kg, Cu < 100 mg/kg, Cd < 5 mg/kg, and Pb < 100 mg/kg), and grouped as “not-enriched” to “moderately-enriched” categories regarding the topsoil enrichment index. Overall, the lower slope was shown to be more contaminated with the heavy metals compared to the other positions.  相似文献   
94.
In this study, the soil washing technique has been used to treat mine tailings contaminated heavily with arsenic and heavy metals at Jingok mine, which is one of the abandoned mines in Korea. The results showed that phosphoric acid, citric acid, oxalic acid, and sodium metabisulfite were highly effective in extracting arsenic and heavy metals. Among them, oxalic acid was the most effective (especially for Pb, Cu, and Zn), as even a residual fraction of arsenic was partly extracted. The optimum concentration of washing reagent and the ratio between the mine tailings and washing reagent were found to be 0.5 M and 1:20, respectively. In addition, the extraction kinetics of arsenic and heavy metals was fast, in which the reaction time of 30 minutes was deemed to be a sufficient contact time. From the results, it may be concluded that the low pH of washing solution and the amount of dissolved Fe may be considered as the most important factors in the extraction of arsenic and heavy metals.  相似文献   
95.
Petroleum products are one of the major sources of energy for industry and daily life. Growth of the petroleum industry and shipping of petroleum products has resulted in the pollution. Populations living in the vicinity of oil refinery waste sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAH) through inhalation, ingestion, and direct contact with contaminated media. PAH have often been found to coexist with environmental pollutants including heavy metals due to similar pollution sources. The levels and distribution patterns of Σ16 PAH (sum of the 16 PAH) and heavy metals (lead, copper, nickel, cobalt, and chromium) were determined in soil and sediment in the vicinity (5 km radius) of an oil refinery in India. Concentrations of Σ16 PAH in the soils and sediments were found to be 60.36 and 241.23 ppm, respectively. Higher amount of PAH in sediments as compared to soil is due to low water solubility of PAH, settled in the bottom of aquatic bodies. The levels of lead, copper, nickel, cobalt, and chromium (total) in soil were 12.52, 13.52, 18.78, 4.84, and 8.29 ppm, while the concentrations of these metals in sediments were 16.38, 47.88, 50.15, 7.07, and 13.25 ppm, respectively. Molecular diagnostics indices of PAH (Ratio of Phenanthrene/Anthracene, Fluranthene/Pyrene) calculated for soil and sediment samples indicate that the oil refinery environment is contaminated with PAH from petrogenic as well as pyrolytic origin and heavy vehicular traffic on the Agra- Delhi National highway. Sixteen PAH priority pollutants were detected in the United States in entire samples collected near oil refinery areas and concentrations of Σ16 PAH in soil was found to be 1.20 times higher than the threshold value for PAH in soil by ICRCL (Inter-Departmental Committee on the Redevelopment of Contaminated Land). This concentration could lead to disastrous consequences for the biotic and abiotic components of the ecosystem and may affect the soil quality, thus impairing plant growth and its bioaccumulation in food chain.  相似文献   
96.
Founded in thermodynamics and systems ecology, emergy evaluation is a method to associate a product with its dependencies on all upstream environmental and resource flows using a common unit of energy. Emergy is thus proposed as an indicator of aggregate resource use for life cycle assessment (LCA). An LCA of gold mining, based on an original life cycle inventory of a large gold mine in Peru, is used to demonstrate how emergy can be incorporated as an impact indicator into a process‐based LCA model. The results demonstrate the usefulness of emergy in the LCA context. The adaptation of emergy evaluation, traditionally performed outside of the LCA framework, requires changes to the conventional accounting rules and the incorporation of uncertainty estimations of the emergy conversion factors, or unit emergy values. At the same time, traditional LCA boundaries are extended to incorporate the environmental processes that provide for raw resources, including ores. The total environmental contribution to the product, doré, is dominated by mining and metallurgical processes and not the geological processes forming the gold ore. The measure of environmental contribution to 1 gram (g) of doré is 6.8E + 12 solar‐equivalent Joules (sej) and can be considered accurate within a factor of 2. These results are useful in assessing a process in light of available resources, which is essential to measuring long‐term sustainability. Comparisons are made between emergy and other measures of resource use, and recommendations are made for future incorporation of emergy into LCA that will result in greater consistency with existing life cycle inventory (LCI) databases and other LCA indicators.  相似文献   
97.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   
98.
Abstract

Arsenic, cadmium, lead, and mercury in fish is the result of long-term biomagnification in the food chain and is of public concern, due to the toxicity they engender. The objective of this research was to determine the concentrations of arsenic, cadmium, lead, and mercury in 13 species of marine fish broadly commercialized in Aracaju, SE, Brazil and to evaluate the risks of fish consumption associated with these trace elements, using the Target Hazard Quotient (THQ). As, Cd, and Pb levels were measured with inductively coupled plasma mass spectrometry (ICP-MS), and mercury was analyzed via cold vapor atomic absorption spectrometry. The results indicate a large variability in concentrations for arsenic (0.07–2.03?mg kg–1) and mercury (0.01–1.44?mg kg–1), associated with the animal dietary category. Cadmium (0.04–0.19?mg kg–1) and lead (<0.01–0.45?mg kg–1), on the other hand showed a mild variability. None of the evaluated specimens had As, Cd, and Pb THQ values higher than 1. The THQ values for mercury were higher but indicated no consumption risk, except for amberjack, and snook fish. Overall THQ indicates lower risk of consumption in fish that are at the base of the food chain, than in those that are top predators.  相似文献   
99.
Abstract

The spatial distribution of six heavy metals (Cd, As, Zn, Pb, Cr, and Cu) in the soil of a decommissioned uranium mining area was investigated and their potential environmental risk was assessed. Soil samples were collected along the main riversides enclosing the mining area. The heavy metal distribution was determined by geospatial interpolation. Pearson correlation coefficient and principal component analysis were used to locate the sources of pollution which are the mine ore as natural source, and dressing plants and tailing area from human activity. The results indicate that the average concentrations of As and Cd strongly exceed the recommended EQSS (Environmental Quality Standard for Soils of China) limits at all sampling sites, whereas Zn concentrations were found to be slightly over the limit only at sampling sites close to the mining area. The concentrations of Cr, Cu and Pb were all within the recommended limits. Environmental risk was assessed using the toxicity characteristic leaching procedure defining the degree to which extend the metal is released into the solution. High leaching rates were found only for Zn and Cd, suggesting that together with its high concentrations Cd is the most toxic metal around the mining area, followed by As.  相似文献   
100.
Abstract

Identifying the source effect on heavy metals to human health risk is essential for devising and implementing restoration policies for polluted soils. For this purpose, eight heavy metals (As, Cd, Hg, Cr, Cu, Ni, Pb, and Zn) in soil profile samples (0–10, 10–20, 20–30, and 30–40?cm) collected in the area around aluminum-plastic manufacturing facilities (APMF) were determined. An absolute principal component score multiple linear regression (APCS-MLR) model supported by a health risk assessment (HRA) model was developed to determine the source apportionment of soil heavy metals and contribution rate of pollution sources to human health risk. Results showed significant accumulations of eight metals in the topsoil (0–20?cm), parent material, transportation, APMF, and agricultural practices were the four major contributing sources for heavy metals in soils, with average contribution percentages of 21.69%, 24.99%, 29.60%, and 14.25%, respectively. Carcinogenic risk factors for adults (1.23E-04) and children (1.32E-04) were found to be above the acceptable level (1E-06 to 1E-04). The health risk quantification results indicated that parent material, APMF, transportation, agricultural practices, and unidentified factors accounted for 55.76%, 14.48%, 12.09%, 10.13%, and 7.54% of the carcinogenic risk for children and adults. The adverse impacts of Cd, Zn, and Pb accumulations in soil coming from APMF activities were significant and need to receive more attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号